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1. Introduction 

We live in the age of information technologies. In structural 
dynamics, acoustics, electrical engineering, fluid dynamics and 
many other areas computer simulations became an integral part of 
technological development. However, numerical simulation of 
contact problems is still in its infancy. Simulation of “contact 
interface” remains in many industrial simulation programs a weak 
spot. The reason is the mathematical complexity of contact prob-
lems: they are described by integral equations with mixed bound-
ary conditions, while neither the pressure nor the the deformation 
fields of the contacting bodies are known in advance; they have to 
be determined by iterations in the course of solution. Further, in 
many tribological problems, surface roughness may play an im-
portant role which requires very fine discretization. Standard 
finite element programs allow for simulation of contact problems. 
However, they are not fast enough to allow extensive parameter 
studies and they cannot be used for calculation of contact forces 
in superordinate system dynamics simulations. 

Many mathematical methods of handling systems with inter-
acting degrees of freedoms are based on changing the "para-
metrization" of the considered system in such a way that the de-
grees of freedom become non-interacting. One of the most effec-
tive analytical and numerical methods in Science – the Fourier 
analysis – is based on the replacement the parametrization with 
coordinates by parametrization with wave vectors which trans-
forms partial differential equations or integral equations contain-
ing “convolutions” into algebraic ones. The same idea lies behind 
the "modal" reduction in structural dynamics.  

The standard formulation of contact mechanical problems in 
the geometrically linear approximation make use of the so-called 
“fundamental” solution of the theory of elasticity determining the 
deformation of the contact place under the action of a single con-
centrated force (Fig.1a).  
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Fig.1 (a) Fundamental solution is a basis of all “standard” formu-
lations of analytical and numerical simulation methods in contact 
mechanics. (b) Indentation of a flat-ended punch. (c) Jäger repre-

sentation of arbitrary axis-symmetric body as superposition of 
flat-ended cylindrical indentations. 

 
For the isotropic elastic half-space, this solution has the form 
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where zu  is the normal displacement of a surface point, NF  is 
the normal force, r  the polar radius in the contact surface, and 

*E  the effective elastic modulus [1]. An arbitrary stress distribu-
tion ( , )p x y′ ′ then leads to the surface deformation 
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The two most powerful computational methods in contact 
mechanics developed in the last decade – the Boundary Element 

Method (BEM) and the Method of Dimensionality Reduction 
(MDR) are based on transformations of the integral equation (2) 
to an algebraic one:  

• MDR uses the “Jäger superposition” [2] (Fig. 1b.c);  
• BEM uses the fast Fourier-Transformation [3]. 

2. MDR: Fundamental solution vs Jäger superposition 

If the indentation depth d as function of the contact radius 
a would be known: 

 ( )d g a= , (3) 
then the normal force NF  as function of indentation would be 
trivially given by  
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where d( / d) Na dk F= 


 is stiffness of a cylindrical punch with 
radius a . The beautiful feature of Eqs. (3) and (4) is that they 
could be interpreted as indentation of a modified profile ( )g a  
into elastic foundation with independent springs with spacing 

da  having stiffness 1 d ( ) d
2 d

k a a
a



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 (Fig.2). The modified profile 

( )g a  can be extracted from the solution for a rigid flat-ended 
punch (Fig.1b). 

 
 

Fig. 2 MDR-transformation: The initial profile is replaced by a 
transformed one and at the same time the elastic half-space by the 

equivalent Winkler foundation. 
 

This interpretation is the key of the Method of Dimensionali-
ty Reduction. According to Eq. (4), the application of the MDR is 
straightforward, if two conditions are fulfilled: (1) the contact 
stiffness of a cylindrical punch with radius a , ( )k a  is known, 
and there is a rule of determining the modified profile ( )g a . It is 
of no importance, in what way these two steps are done: analyti-
cally, numerically – or even experimentally. For the homogeneous 
media, these transformations are explicitly known. If the initial 
three-dimensional profile is ( )f r  then the MDR-transformed 
profile is determined by the Eq. 
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The stiffness of a contact with a cylindrical punch is 
*( ) 2k a E a= , thus providing the rule for the stiffness of springs 

of equivalent elastic foundation *d dk E x= . 
Once the solution of the equivalent one-dimensional problem 

is obtained, the exact three-dimensional solution is restored by a 
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small number of simple rules [4],[5]. The solution of the MDR 
formally reproduces the solution first obtained by Galin [6] and 
later used by Sneddon in his very much cited paper [7]. 

Combined with reduction of Cattaneo [8] and Mindlin [9] of 
the tangential contact problem to the normal contact and the Lee 
[10] and Radok's [11] reduction of viscoelastic contact to elastic 
contact as well as reduction of adhesive contact to a superposition 
of non-adhesive solutions (JKR theory [12]) this provides a very 
powerful method of treating the above mentioned classes of 
problems. In the case of functionally graded materials, a new 
profile-transformation has to be used [13],[14]. The MDR can 
also be applied to arbitrary shaped contacts. How to do this is 
described in [15]. 

3. BEM: Coordinates vs wave vectors 

The most effective method of numerical simulation of con-
tacts of an arbitrary shape is the Boundary Element Method 
(BEM) [3] as it needs to discretize only the surface of contacting 
bodies. In the modern numerical realizations of BEM, the integral 
Eq. (2) in corresponding discretized form is solved in Fouri-
er-space where it becomes simple algebraic equation. The main 
time consuming steps of the solution are shifted to the direct and 
inverse Fourier-Transformations. The two keys for acceleration 
these steps are: 

(a) Using the Fast Fourier-Transformation (FFT), and  
(b) Parallel computation on graphic cards, see for details [3].  

In Fig. 3, a typical simulation of a contact of rough surface is 
shown which presently is possible at any desktop computer 
equipped with a graphic card.    

 
 
Fig.3 Rough surface, contact area, as well as normal and tangential 

stress distributions simulated by BEM [3]. 

The numerical effectiveness of BEM allows generalization it 
and application of BEM for analysis of normal [16] and tangential 
[17] contacts with viscoelastic bodies. It even allows simulation 
of dynamic process in systems containing viscous contacts as e.g. 
impacts [18]. 

 
Fig.4 Consecutive contact configuration of a flat-ended stamp in 

form of “Marry Poppins” calculated with adhesive BEM [20]. 
 

Simulation of adhesive contacts with BEM was for a long 
time a non-solved problem. The breakthrough came 2015 by 
formulating a mesh-dependent local detachment criterion based 
on the energy balance [19], which later was generalized for gra-
dient media [20]. This formulation was validated by comparison 
with known exact analytical solutions and also withstands usual 
tests of independence of mesh size and orientation of the discreti-
zation network [20]. In [21], a large collection of simulation re-

sults for various shapes of contacting bodies is presented. Fig. 4 
shows one example of this collection: Three stages of detachment 
of a flat punch in the form of “Marry Poppins”. 

A detailed description of the adhesive BEM including valida-
tion by specially designed experiments can be found in [22]. 
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